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1. Executive Summary 

The Sacramento-San Joaquin Delta (henceforth, Delta) is an area of 2,219 Km2 with about 1,800 Km 
waterways.  It provides drinking water for more than 23 million people while supporting a multi- billion 
dollar agricultural industry and an extensive recreational boating and fishing industry. Starting in the late 
1980s major invasive aquatic plants began to expand their distributions, the most aggressive of which are 
Pontederia crassipes (water hyacinth), Ludwigia spp. (water primrose) and Egeria densa (Brazilian 
waterweed).  Containment methods began in the late 1990s and still continue today.  The extent of these 
species has expanded in recent years with the 2011-2015 drought. 

Mapping of invasive species in the Delta has been sporadic since 2003, when we first began. The current 
project, to map the status of invasive species by acquiring imagery in Summer 2020 and analyzing it was 
funded for two main purposes – 1) to ensure that the time series of invasive species mapping continued 
and 2) to determine seasonal and annual impacts of herbicide management of invasive species.  

SpecTIR LLC from Reno, NV, flew their Fenix 1K hyperspectral imager over the Delta on dates between 
July 15 -18, 2020.  The Fenix sensor measures 348 spectral bands across the visible and near-infrared 
spectrum (380-970nm) and 274 spectral bands in the Shortwave infrared spectrum (970nm- 2500nm), at 
a nominal spatial resolution of 2x2m. 

Field data of aquatic species were collected by boats provided by California Department of Food and 
Agriculture (CDFA) and staffed with Center for Spatial Technologies And Remote Sensing (CSTARS) and 
CDFA personnel between July 20-31, 2020. These data were used for training and validation of the 
remotely sensed images.  The crews collected 838 points for the dominant submerged (SAV), floating 
(FAV), and emergent (EAV) vegetation species in the Delta.  For each point they noted attributes such as 
species name(s), location, cover estimates, patch size and azimuthal orientation in the long direction. In 
addition, rake data and Secchi depth were measured at SAV points. 

The Random Forests (RF) machine learning algorithm was used to classify the imagery. The resulting 
classification was highly consistent with the field data, producing pixel-based overall accuracy of 90.4% 
with a kappa value of 0.89 (indicating excellent agreement) for the Delta. All species-specific accuracies in 
the Delta were > 80% except for Phragmites and Arundo classes which had the lowest accuracies. In the 
legal Delta, in Summer 2020, SAV covered 3776 ha or 23.2% of waterways, water primrose covered 514 
ha and water hyacinth covered 232 ha, collectively occupying 4.6% of waterways.  
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2. Introduction 

The Sacramento-San Joaquin River Delta is recognized to be one of the most invaded estuaries in the 
world (Cohen and Carlton, 1998). The hydrology of the Delta has undergone extensive alteration with its 
system of levees and dams in concert with massive upriver federal and state reclamation projects. 
Currently managed as a tidal freshwater system, it supplies valuable water resources more than 23 
million people, supports a multibillion dollar agricultural industry and 14.4 million person-days of 
recreational boating and 11.8 million person-days of recreational fishing (these are not combined 
because of likely over-counting; www.ca.gov/rec_eco_recreation.htm). In recent decades eutrophication 
has increased significantly (Nichols et al., 1986), while suspended sediment inputs and turbidity have 
declined (Hestir, 2010; Wright and Schoellhamer, 2004). The altered hydrology of the Delta has made its 
ecosystem susceptible to invasion by eliminating the competitive advantage of low-nutrient-brackish-
adapted native species (Bossard et al., 2000; Cook, 1990; Sculthorpe, 1967) while providing enough 
nutrients (Bicudo et al., 2007) and reduced salinity for opportunistic species to become competitive. In 
particular, three aggressive freshwater invasive plants that flourish in high-nutrient conditions but are ill-
adapted to high salinity (Cook and Urmi-König, 1984; El-Gendy et al., 2005; Gopal, 1987; Penfound and 
Earle, 1948) have established in the Delta: the Floating Aquatic Vegetation (FAV) species, Pontederia 
crassipes (water hyacinth) and Ludwigia (water primrose) and the Submerged Aquatic Vegetation (SAV) 
species, Egeria densa (Brazilian waterweed).  

Once invasive species are well-established in a degraded ecosystem, they promote an alternative 
ecosystem state that is resistant to further change due to positive feedback loops (Scheffer et al., 2007). 
For example, the process of eutrophication spurs the growth of macrophytic FAV which is usually limited 
by nutrients in the water column (Scheffer et al., 2003).  As the FAV canopy expands, it shades 
macrophytic SAV, thus concurrently reducing SAV cover. Decomposing plant matter below the floating 
mats creates anoxic conditions, mobilizing phosphorus and other nutrients in the sediment, furthering 
nutrient loading which continues to inhibit reestablishment of SAV (Scheffer et al., 2007).  Alternatively, 
under conditions that favor SAV, once it is established, SAV can slow water velocity by over 40-80% (Lacy 
et al., 2021; Wilcock et al., 1999), which decreases sediment re-suspension. This in turn increases light 
availability through the water column, and slows water column nutrient recycling rates (Horppila and 
Nurminen, 2003; Koch, 2001), creating conditions more favorable for SAV, thereby furthering SAV 
survival and persistence (Santos et al., 2012). 

Cost-effective, large scale monitoring methods are fundamental to tracking and managing invasive 
aquatic plants. Remote sensing imagery (both aerial and satellite) is a non-intrusive and repeatable 
mapping method that has been widely used to map invasive aquatic plants (Ackleson and Klemas, 1987; 
Lehmann and Lachavanne, 1997; Sawaya et al., 2003; Ward et al., 2003; Zhang, 1998). Airborne 
hyperspectral imagery acquired at fine spatial resolution is more effective at discriminating aquatic 
species than the more widely available airborne and satellite multispectral imagery (Hestir et al., 2008; 
Santos et al., 2012; Silvestri et al., 2003). Hyperspectral imagery measures the solar spectrum from visible 
through the infrared and can contain hundreds of bands. Technically the difference between the 
hyperspectral imaging term and imaging spectrometry is that hyperspectral imaging simply implies lots of 
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spectral bands while imaging spectrometry indicates that you have many narrow spectral bands that 
cover a defined interval of the electromagnetic spectrum.  

From 2004 to 2008, the Center for Spatial Technologies And Remote Sensing (CSTARS) conducted an 
extensive study using airborne hyperspectral imagery from the HyVista Corporation, the Australian 
HyMap instrument, to assess the extent of SAV and FAV species in the Delta, funded by the California 
Department of Boating and Waterways.  Six years later, monitoring started again, this time funded 
through California Department of Fish and Wildlife (CDFW) drought funds and funds allocated for the 
Delta Smelt Resiliency Strategy (DSRS). Airborne AVIRIS-NG hyperspectral imagery was acquired over the 
entire Delta in fall of 2014 and 2015 and over the central Delta and Liberty Island in fall of 2016 and 2017. 
In 2018 and 2019, data was collected using the HyMap sensor again but at a finer resolution of 1.7 x 1.7 
m. For the 2020 flight, SpecTIR delivered imagery at a resolution of 2x2 m pixels.  The 2004, 2008, 2015, 
2017, 2019 and 2020 results of classified SAV and FAV in the Delta are presented in this report 
highlighting trends and their possible causes. 

3. Study Area Description 

The Sacramento-San Joaquin River Delta spans approximately 2,219 km2, extending from Sacramento, 
Yolo and Solano Counties in the north to the San Joaquin County in the south.  

3.1  Habitat 

The Delta is a diverse network of channels emptying the two major river systems of Northern and Central 
California into San Francisco Bay. While the Delta supports a great variety of habitats, characteristics of 
the two dominant physical habitats are described below: 

3.1.1  Water Channels:  

a. Principal water channels are wide and deep and do not support macrophytic aquatic vegetation 
except along the shallow channel edges where water velocity is low, 

b. Channels with small natural islands support SAV and FAV in the shallow waters along the island’s 
edge, and  

c. Narrow and shallow meandering sloughs in the east Delta that are frequently extensively colonized 
by either SAV or FAV. 

3.1.2  Flooded Islands:  

Arising from breached levees, they often have shallow water depths and support extensive patches 
of SAV and FAV. Emergent wetland species (EAV) like tules and cattails form a boundary at the 
leading edge of the land. Riparian vegetation on the levee crown protect the islands and act as a 
buffer to the strong winds, common in the Delta. These Deltaic lakes can be compared to shallow 
temperate lakes as open systems and low water velocity driven primarily by wind-wave action. 
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3.2  Aquatic Plant Communities 

The aquatic vegetation in the Delta can be categorized into submerged, floating, and emergent plant 
communities, referred in this report as SAV, FAV and EAV (Table 3.1).  

3.2.1  Submerged Aquatic Species (SAV):  

The Delta SAV community consists of at least six native and four non-native species but is dominated 
by the invasive Egeria densa (Brazilian waterweed) (Hestir et al., 2008; Santos et al., 2010). The 
ecological niche of SAV species in the Delta, although limited by light availability and water velocity 
(Koch, 2001; Santos et al., 2010), is spatially much more extensive than that of the floating species.  

3.2.2  Floating Aquatic Species (FAV):  

The creeping emergent and floating macrophyte community in the Delta is dominated by two non-
native species, water hyacinth (P. crassipes) and water primrose (Ludwigia spp.) (Cal-IPC, 2006; 
Khanna et al., 2011; Santos et al., 2009). There are also three native species, pennywort (Hydrocotyle 
umbellata), fairy moss (Azolla spp.) and duckweed (Lemna spp.). Both pennywort and water 
primrose, although nominally rooted, develop adventitious roots that can draw nutrients directly 
from the water, which allow them to form floating canopies extending several meters into the 
channel from the shore (Cook, 1990; Rejmánková, 1992). Hence, we consider them as part of the 
floating species class. 

3.2.3  Emergent Aquatic Vegetation (EAV): 

The emergent plant community in the Delta is dominated perennial monocots, including two Typha 
species (cattail), T. latifolia and T.  angustifolia and their hybrids, two Schoenoplectus  species (tule), 
S. acutus and S. californicus, and the invasive cane-like grass, Phragmites australis (common reed). In 
addition, there is another common invasive species, Arundo donax (giant cane), also a cane-like grass 
that is generally found on slightly higher ground on the levees adjoining the channels. 
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Table 3-1. Common names and scientific names of target species found in the Delta.  Some species only have a few 
field points because they are relatively scarce in the Delta or not found in the parts of the delta where field data 
were collected. Number of times each species or type was identified in field-collected data points. A total of 838 
points were measured. 

Broad Class Species (common name) Species (scientific name) 2020  
Points 

Submerged Aquatic 
Vegetation (SAV) 

Brazilian waterweed Egeria densa 50 
Watermilfoil Myriophyllum spicatum 18 
Coontail Ceratophyllum demersum 12 
Fanwort Cabomba caroliniana 5 
Curly leaf pondweed Pomatogedon crispus 6 
American pondweed Potamogeton nodosus 2 
Richardson’s  pondweed Potamogeton richardsonii 5 
Sago pondweed Stuckenia pectinata 10 
Waterweed Elodea canadensis 3 
Southern Naiad Najas guadalupensis 3 
Algae mats   3 
SAV mixed   62 

Floating Aquatic 
Vegetation (FAV) 

Water primrose Ludwigia spp. 140 

Pennywort Hydrocotyle umbellata 11 
Mosquito fern Azolla spp. 7 
Water hyacinth Pontederia crassipes 86 
Sponge plant Limnobium laevigatum 1 

Emergent Aquatic 
Vegetation (EAV) 

Tule Schoenoplectus spp. 122 
Common reed Phragmites australis 37 
Giant reed Arundo donax 15 
Cattail Typha spp. 75 

Water Water   67 
Other     98 

 

4. Image Acquisition and Pre-processing 

The Fenix 1K sensor was flown over the Delta between July 15-18 by SpecTIR LLC. as shown in Figure 4-1. 
Fenix measured 320 bands which collected data in wavelengths from 390 nm to 2450 nm (bandwidth: 5 
nm).  Flightlines were flown to overlap by 25% to avoid gaps in the data. The data was delivered at a 
resolution of 2x2m. The flightlines were geocorrected and atmospherically calibrated to reflectance by 
SpecTIR and delivered to CSTARS. 
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Figure 4-2 shows the location and pseudo true color views (that is, three bands in the blue, green and red 
parts of the visible spectrum that are displayed in true color) from seven sites that we chose to focus on 
during this study. 

Table 4-1. Summary of image acquisition from 2004 to 2020. 

Year Image 
acquisition 

# of 
Flightlines 

Sensor Pixel 
Size 

Image  area 
hectares Image extent 

2004 Jun 25 - Jul 7 64 HyMap  3.0m 274691.3 Full Delta 
2005 Jun 22 - Jul 8 64 HyMap  3.0m 329149.7 Full Delta 
2006 Jun 21 - 26 64 HyMap  3.0m 282437.8 Full Delta 
2007 Jun 19 - 21 64 HyMap  3.0m 277178.2 Full Delta 
2008 Jun 29 - Jul 07 48 HyMap  3.0m 219841.9 Liberty island to S. Delta 
2014 Nov 14-25 61 AVIRIS  2.5m 239707.9 Full Delta 
2015 Sep 17-21 61 AVIRIS  2.5m 317265.0 Full Delta 
2016 Oct 8-9 22 AVIRIS  2.5m 104355.0 Liberty island, central Delta  
2017 Nov 1 22 AVIRIS  2.5m 93874.2 Liberty island, central Delta  

2018 Oct 6-9 42 HyMap  1.7m 184319.2 Liberty island to Lost 
slough, central Delta 

2019 Sep 23-28 71 HyMap  1.7m 326098.9 Full Delta 
2020 Jul 15-18 58 Fenix  2.0m 318763.3 Full Delta 
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Figure 4-1. Color InfraRed band mosaic of the Delta imagery acquired in July 2020. 
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Figure 4-2. Location of study sites chosen to show detailed species maps.
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5. Field Data Collection 

Field work in support of the July 2020 overflights was done from July 20 - 31, 2020. Staff from CSTARS 
collected the data from motorboats provided by the California Department of Food and Agriculture. UC 
Merced also contributed personnel and boat for the Summer 2020 field campaign.  These crews 
collected Ground Reference Data (GRD), noting the GPS location and species and other features (e.g., 
flower, vegetative, green or senescent) of aquatic vegetation species that were used in training and 
validation of the classified maps. 

The crews collected 838 data points (Figure 5-1) for the dominant submerged (SAV), floating (FAV), and 
emergent (EAV) vegetation species in the Delta.  For each point they noted attributes such as species 
name(s), location, cover estimates, patch size and orientation.  In addition, for SAV species, teams also 
collected open water, rake data and Secchi depth.  GRD points were collected in mostly homogeneous 
patches (greater than 80% of a single species or cover class) larger than 9 m2 (3 m x 3 m). 

Positions were measured using high precision (sub-meter accuracy) Trimble DGPS units (Trimble 
Navigation Limited, Sunnyvale, California) with Wide Area Augmentation System (WAAS) differential 
correction. If the observer was unable to center the DGPS on the weed patch, positions were recorded 
with a directional offset estimated using a combination of laser rangefinders, compass direction, and 
visual estimation. All GRD and DGPS positions were entered using a linked datalogger with TerraSync 
software (Trimble Navigation Limited) and exported as ArcGIS shapefiles projected to UTM Zone 10N, 
Datum WGS-84. Prior to training and testing of the classifier, the spatial and attribute data quality was 
checked through comparison of GRD, field photos, and imagery. Number of points collected for each 
species in 2020 are summarized in Table 3-1. 

Table 5-1. Summary of ground reference data from 2004 to 2020. 

Year Image acquisition Field GRD Field Dates 
2004 June 25 - July 7 2103 June 24 - July 2 
2005 June 22 - July 8 2778 June 21-28 
2006 June 21 - 26 4164 June 6-23 
2007 June 19 - 21 2126 June 12-28 
2008 June 29 - July 07 1334 June 23 - July 8 
2014 November 14 - 25 1036 October 20-30 
2015 September 17 -21 1375 September 9-17 
2016 October 8-9 637 October 11-20 
2017 November 1 891 October 3-11 
2018 October 6-9 950 September 25 - October 3 
2019 September 23 -28 1334 October 1-10 
2020 July 15 -18 838 July 20-31, August 25 
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Table 5-2. Specific species of ground reference data collected from 2004 to 2020. 

 

 

Common Name (scientific name ) 2004 2005 2006 2007 2008 2014 2015 2016 2017 2018 2019 2020

Brazilian waterweed (Egeria densa ) 432 601 1130 600 139 151 195 70 191 198 138 50
Watermilfoil (Myriophyllum spicatum ) 69 36 68 184 30 43 33 21 30 44 28 18
American pondweed (Potamogeton nodosus ) 25 30 63 42 7 3 7 0 7 3 2 2
Curly leaf pondweed (Potamogeton crispus ) 25 19 44 117 22 20 40 25 26 20 7 6
Sago pondweed (Stuckenia pectinata ) 21 48 48 15 7 27 5 10
Cabomba (Cabomba caroliniana ) 12 7 15 34 8 21 2 8 18 9 17 5
Coontail (Ceratophyllum demersum ) 29 15 17 221 68 31 45 6 4 23 23 12
Fine leaf pondweed (Potamogeton filiformis ) 5 1
Common waterweed (Elodea canadensis ) 5 1 22 4 1 2 4 7 3
Pondweed spp (Potamogeton  spp.) 23 14 24 88
Richardson pondweed (Potamogeton richardsonii ) 8 14 5
Southern Naiad (Najas guadalupensis ) 3 1 3
Algae 81 47 79 392 33 8 11 8 0 18 13 3
Mixed SAV 39 5 71 5 32 46 16 4 9 62
Other SAV 26 1 22

Water hyacinth (Pontederia crassipes ) 262 304 285 58 93 223 284 104 116 128 115 86
Pennywort (Hydrocotyle umbellata ) 201 300 400 313 87 13 11 4 15 12 2 11
Water primrose (Ludwigia  spp.) 71 86 130 186 34 91 172 174 207 172 281 140
Mosquito fern (Azolla  spp.) 12 5 7 1 2 5 2 2 9 13 19 7
Duckweed (Lemna  spp.) 6 9 4 5 0 0 9
Sponge plant (Limnobium laevigatum ) 4 1
Parrot feather (Myriophyllum aquaticum) 3 1

Cattail (Typha  spp.) 54 31 14 50 6 56 52 38 53 37 81 75
Tule (Schoenoplectus  spp.) 259 363 291 376 47 173 98 69 64 72 219 122
Common reed (Phragmites australis ) 26 42 31 39 0 22 44 12 6 17 24 37
Giant reed (Arundo donax ) 33 55 102 16 32 54 8 21 24 25 15
Riparian 174 250 905 84 4
Water 86 53 352 912 720 239 5 47 73 122 67

Submerged Aquatic Vegetation (SAV) species

Floating Aquatic Vegetation (FAV) species

Emergent Aquatic Vegetation (EAV) & Riparian
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Figure 5-1. Location of field data collected in July 2020. The lifeform points are enlarged to show up clearly. 
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6. Image Classification 

6.1  Data Reduction Techniques 

Three different data reduction techniques (or data enhancement techniques) were used to create the 
inputs fed into the Random Forests classifier.  While Spectral Mixture Analysis (SMA) and Spectral Angle 
Mapper (SAM) are themselves classifiers, in this analysis, they were used to highlight the most 
important spectral differences between the species and cover types and not as independent classifiers. 

6.1.1  Indexes 

Indexes are single values generated by combining data from multiple spectral bands.  Indexes 
highlight and enhance certain spectral properties while reducing background effects that would 
normally depress the spectral identification.  For each flightline, we calculated a suite of parameters 
that included various indexes sensitive to differences in plant biochemistry, such as NDVI (sensitive 
to leaf mass or area), NDWI (sensitive to leaf water content), and GI (sensitive to differences in 
chlorophyll concentration). Indexes allow us to approach the underlying biophysical parameters of 
different land cover classes, however they are empirical relationships and may respond differently 
to different plant communities or under different environmental conditions. All calculated indexes 
are described in Table 6-1 along with their formulas and relevant scientific sources. 

6.1.2  Spectral Mixture Analysis (SMA) 

Spectral mixture analysis (SMA) was used to calculate the within-pixel fractional cover of the general 
landcover classes. In SMA, the model estimated fractions of the endmembers are adjusted using the 
least squares method until the best spectral fit is found to match the band-by-band measured pixel 
spectrum, plus any residual error (Adams et al., 1995; Huete, 1986; Smith et al., 1990).  The method 
can theoretically identify as many endmembers (the reference spectra) as is equal to the number of 
bands plus one additional band for Root Mean Square Error (RMSE). However, if you use more than 
a few endmembers for calculating the endmembers in a pixel, you run into the problem that some 
endmembers can be created by combining the spectra of other endmembers, thus only the most 
distinctive endmembers are used.  We selected six general types of endmembers for the SMA: 
water, soil, dry plant residues (Non-Photosynthetic Vegetation: NPV), SAV, FAV and EAV. For each 
image pixel, the fractional cover of each SMA endmember is calculated as the proportion of the 
measured spectrum for that pixel.  Figure 6-1 A shows the spectral library used for the SMA. 

6.1.3  Spectral Angle Mapper (SAM) 

Spectral Angle Mapper (SAM) uses the full spectrum, which is calculated as a vector, to define each 
reference class. This method uses an n-Dimensional angle to confirm the match of unknown pixel 
spectrum to a reference spectrum. The algorithm determines the similarity between the two spectra 
by calculating the angle between them, treating them as vectors in space with dimensionality equal 
to the number of bands. This technique is relatively insensitive to illumination and albedo effects, 
common artifacts in image data. Smaller angles represent closer matches to the reference spectrum 
and greater likelihood that the unknown pixel is of the same class as the reference spectrum. For 
the class image, each pixel is assigned to the class that forms the smallest angle (Kruse et al., 1993).  
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Analyses for multiple reference spectra are run sequentially on the images, each one producing a 
map for the probable distribution of that reference class.  The analyst must then decide where to 
assign boundaries for overlapping classes.  SAM has been shown to be highly effective for identifying 
aquatic vegetation (Alberotanza, 1999; Hirano et al., 2003; Merenyi et al., 2000). Spectral libraries 
with SAM files were created separately for SAV, FAV and EAV communities and for clear and turbid 
water (Figure 6-1 B). SAM produces rule images that contain as many bands as there are 
endmembers. Each band is the estimated distance of the pixel spectrum from the reference 
spectrum corresponding to that band. Only the rule images were used in our analysis, ignoring the 
classification images produced by SAM. 

6.1.4  Continuum Removal 

Many hyperspectral mapping and classification methods require the data to be calibrated to percent 
reflectance. Continuum removal is a method that helps to identify the presence of absorption 
features and provides a basis for comparison of absorption depth, shape, and symmetry. It fits a 
generalized spectrum without specific absorption features to the measured spectrum with such 
features. The difference in reflectance between the two spectra is the measured variable. The 
continuum is a mathematical function that is used to isolate absorption features for analysis (Clark 
and Roush, 1984). It is the equivalent of a “background signal” of the material if specific absorption 
features of interest were not present. Spectra are normalized to a common reference using a 
continuum formed by defining shoulders at the edges of the absorption features. These are “high 
points” in the spectrum (local maxima) and straight lines are fit across the spectral segments 
between these points. The continuum is “removed” by dividing the original spectrum by the 
continuum.  In this way, the spectrum is normalized for albedo and the relative strengths of the 
absorption features can be quantified. In this study, we applied three continuum removals between 
the spectral ranges of 907-1047, 1073-1293, and 2209-2384 nm.  
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Table 6-1. Indexes used as inputs to the Random Forests classifier. 

No. Acronym Formula References 

1 NDVI (RNIR - RR)/(RNIR + RR) (Tucker, 1979) 

2 gNDVI (R750 - RG)/(R750 + RG) (Gitelson et al., 1996) 

3 mNDVI (R750 - R700)/(R750 + R700) (Gitelson and Merzlyak, 1994) 

4 RG_Ratio RR/RG (Gamon and Surfus, 1999) 

5 NDII (RNIR - R923)/ (RNIR + R923) Adapted from (Hunt and Rock, 1989) 

6 NDII2 (RNIR - RSWIR)/(RNIR + RSWIR) (Hunt and Rock, 1989) 

7 LPI 1/RG - 1/RNIR adapted from (Gitelson et al., 2002) 

8 ANIR angle: RR, RNIR & RSWIR  (Khanna et al., 2007) 

9 ARed angle: RG, RR, & RNIR  (Khanna et al., 2013) 

6 ASWIR1 angle: RR, RNIR, RSWIR  (Khanna et al., 2007) 

11 GI (RG - RR)/(RG + RR) (Motohka et al., 2010) 

12 PRI (R530 - R570)/(R530 + R570) (Gamon et al., 1990) 

13 CAI 0.5*(R2020 + R2220) -  R2100 (Nagler et al., 2000) 

14 WADI (R1070 - R1167)/(R1070 + R1167)  Water Absorption Difference Index 

15 ADW1 0.5*(R1070 + R890) -  R990 (Khanna et al., 2013) 

16 ADW2 0.5*(R1270 + R1070) -  R1167 (Khanna et al., 2013) 

17 SIPI (R800 - R445)/(R800 - R680) (Peñuelas et al., 1995) 

18 CRI_550 1/R510 - 1/R550 (Gitelson et al., 2002) 

19 CRI_700 1/R510 - 1/R700 (Gitelson et al., 2002) 

20 ARI 1/R550 - 1/R700 (Gitelson et al., 2001) 
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Figure 6-1. Spectral libraries used to run the (A) Spectral Mixture Analysis (SMA) and the (B) Spectral Angle Mapper 
(SAM) 

A total of 55 different parameters (indexes, bands, SMA and SAM) were created using the 320 bands of 
imagery. Entire list of inputs used, along with their acronyms and full names are tabulated in Appendix 
A. These are the inputs used to train the classifier. 

6.2  Classifier 

The inputs from the above three procedures were combined in a single file for each flightline. Training 
data was extracted from the consolidated files and used to train the classifier. During the analysis of the 
2014 data, we tested three non-parametric classifiers, all of which are insensitive to the type of inputs, 
spread of the data, etc. Our tests showed that Random Forests performed the best of the three 
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classifiers hence in succeeding years we have only classified images using the Random Forests approach. 
A brief explanation of the Random Forests classifier is provided below. 

Random Forests is an automated algorithm that builds hundreds of tree models (Breiman, 2001) by 
randomly selecting a subset of the training data to classify each tree.  This is repeated many times to 
develop a large set of trees that are used to determine the best fit class type for each pixel. To classify a 
new object from an input vector, it passes the input vector down each of the (classification) trees in the 
“forest” (the set of trees). Each tree provides a classification termed a "vote" for a class. The type of 
forest is chosen by the classification type having the most “votes” (i.e., the most frequently chosen class 
among all the trees identified for each pixel). Each tree is grown to the largest extent possible. There is 
no pruning. But because the classifier produces a forest of trees and then “chooses” the most frequently 
selected class, it limits the problem of over-fitting, which occurs when an algorithm becomes too specific 
to the training data thus losing accuracy when trying to classify test data.  

7. Results 

7.1  Accuracy Assessment 

The field data was split equally into training and test datasets.  Polygons were created after considering 
the field data point description and looking at the corresponding field photos. Points are not always 
taken in the center of a patch and sometimes are taken alongside a patch, sometimes using a 
rangefinder offset. Hence the field data point did not always lie in the center of the created polygon.  
The polygon size varied with the patch size information that was collected in the field.  Training polygons 
were only used for training the classifier and test data were only used for accuracy assessment 
maintaining the separation between test and training data. A confusion matrix was used to calculate the 
overall accuracy, user’s and producer’s accuracies, and the Kappa statistic (Story and Congalton, 1986). 
The overall accuracy indicates the probability that the species identified in the image map is in 
agreement with field data at the location. The user’s accuracy indicates the probability that an image 
pixel labeled as a certain class is really that class at the field location; this type of test calculates what is 
often called commission error. The producer’s accuracy indicates the probability that the species 
identified at a field location is correctly mapped in the image, which is an estimate of the omission error. 
The Kappa statistic indicates the level of overall agreement between the field data and the classification 
map. It takes into account the probability of random agreement between the field data and 
classification results (Lillesand et al., 2004; Rosenfield and Fitzpatrick-Lins, 1986). Kappa values range 
from 0 to 1 with values greater than 0.5 indicating good agreement and values greater than 0.8 
indicating exceptional agreement between the two data sets. 
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Table 7-1: Confusion matrix for Random Forests Classifier for the year 2020. EMPR: emergent marsh invaded by 
water primrose; SAV: submerged aquatic vegetation; NPV: non-photosynthetic or dry vegetation. 

 

Table 7-1 shows the confusion matrix for the Random Forests (RF) classifier for the Summer 2020 as 
calculated for the Delta region. The overall accuracy was 90.4% while the Kappa was 0.89. Accuracy for 
previous years is also shown in Table 7-2. 

Table 7-2: Overall accuracy and Kappa Coefficients for all years of datasets cited in this report. 

Year 
Overall 

Accuracy 
Kappa 

Coefficient 
N 

Summer 2004 88.8 87.0 8247 

Summer 2005 91.5 90.5 36593 

Summer 2006 88.4 87.1 15788 

Summer 2007 89.2  87.7 7572  

Summer 2008 88.9 87.2 6704 
Fall 2014 81.8 78.9 13906 

Fall 2015 91.8 90.1 15284 

Fall 2016 87.4 85.3 11989 

Fall 2017 85.5 76.1 14583 

Fall 2018 90.2 89.0 20874 

Fall 2019 90.5 89.6 31944 

Summer 2020 90.4 89.4 21169 

 

Every single year was reclassified to ensure that the shadow class and riparian class were mapped in 
addition to other classes. The final target classes mapped consistently for all years since 2004 were: 
water, SAV, soil, non-photosynthetic vegetation, emergent marsh, riparian vegetation, and shadow. The 
color scheme was also standardized for all years. Generally, the spectrum of a tree shadow falling over 
water is very similar to a SAV pixel spectrum.  Remote Sensing optical imagery has the disadvantage that 

Classified as Arundo EMPR NPV Phragmites Riparian SAV Shadow Soil
Tule-

Cattail
Water

Water 
hyacinth

Water 
primrose

Total
User's 

Accuracy

Arundo 250 0 0 6 1 0 0 0 0 0 0 6 263 95.1

EMPR 21 1579 0 4 4 0 0 0 39 0 131 72 1850 85.4

NPV 0 0 2272 0 0 0 0 16 2 0 14 0 2304 98.6

Phragmites 0 0 0 155 20 0 0 0 28 0 2 0 205 75.6

Riparian 40 81 2 45 1652 0 0 0 114 0 23 18 1975 83.6

SAV 0 0 3 0 0 2222 45 0 32 26 8 0 2336 97.0

Shadow 0 0 0 0 0 54 981 0 1 4 0 0 1040 99.5

Soil 0 0 212 0 0 3 0 2479 0 0 0 2 2696 92.0

Tule-Cattail 10 41 4 44 86 26 0 5 1440 0 104 18 1778 81.0

Water 0 0 0 0 0 188 65 0 0 2464 0 0 2717 90.7

Water hyacinth 2 96 6 1 10 2 0 0 28 0 2118 30 2293 92.4

Water primrose 46 6 0 0 15 0 0 0 14 0 100 1531 1712 89.4

Total 369 1803 2499 255 1788 2495 1091 2500 1698 2494 2500 1677 21169
Producer's 
Accuracy

67.8 87.6 90.9 60.8 92.4 91.2 94.0 99.2 84.8 98.8 84.7 91.3 90.4

Reference Field Data Points
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spectrum is mainly a reflection of the top layer of landcover within the pixel. This means that when 
riparian trees overshadow the waterways, the sensor is mainly “seeing” the tree, not the vegetation that 
might be under the tree. Hence, it is important to map shadow as shadow because we don’t really know 
if the sensor is receiving much information from the vegetation in the water column underlying the tree 
shadow. 

 

Figure 7-1: Performance of the shadow classification. Red represents SAV and dark cyan represents shadow class. 
The upper left panel shows a tree in a channel that has SAV growth along the channel edge. (A) shows the class 
image with SAV along the edge but the pixels under the tree classified as shadow. (B) shows shadow mapped along 
the channel edge on the shadow side. 

The shadow class was largely successful in preventing false positives for SAV detection (Figure 7-1) 
although some SAV might still be mapped as shadow. Overall, this misclassification was rare and within 
the uncertainty estimates of our classifier. 

Another problem we faced in 2019 and 2020 which had been rare in previous years, was the abundance 
of mixed pixels of emergent marsh and water primrose. Due to the recent incursions of water primrose 
into emergent marsh, when water primrose mats were interwoven within the marsh, the mixed class, in 
terms of its spectra, behaved neither like pure water primrose nor like marsh but instead was closer to 
the riparian tree signature. Figure 7-2 A shows how the transition between primrose mats and marsh 
were mapped as riparian vegetation in 2019 and Figure 7-2 C shows what the area looks like in the true 
color image. In 2020, we decided to map a new class called EMPR (emergent marsh invaded by water 
primrose). Figure 7-2 B shows the same region in Liberty Island with this special mixed class mapped 
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separately. The right and lower panels show field pictures of invaded marsh. Mapping the mixed class as 
a separate class likely increases uncertainty of water primrose, marsh and the mixed class maps, but it is 
preferable over calling this class either primrose or emergent marsh. Our accuracy estimates for 
mapping this class are quite good with both user’s and producer’s accuracy being over 85%. 

 

Figure 7-2: Water primrose invaded marsh field pictures (right panel and bottom panel) with (A) 2019 classification 
of water primrose (yellow) and the invaded marsh mapped as riparian (light green), (B) 2020 classification of 
invaded marsh as a separate class (chartreuse), (C) and (D) the 2019 and 2020 invaded marsh in true color.   
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7.2  Acreage Calculations 

Total acreage values of submerged (SAV) and floating (FAV) species in hectares from the common area 
for all years in the Delta are listed in Table 7-3 (also see Figure 7-3) for 2004 to 2020 but the values 
represent area only in the region of the Delta common to all years – the Central Delta and the Liberty 
Island – Cache Slough complex. 

Table 7-3: Area in hectares of Submerged Aquatic Vegetation (SAV), shadow, water hyacinth, water primrose, total 
Floating Aquatic Vegetation (FAV), within the common area (Central Delta + Liberty Island Cache Slough complex). 

 Area (ha) for common area among all years 

Year SAV Shadow Water 
hyacinth 

Water 
primrose 

Pennywort Total 
FAV 

Summer 2004 2558 161 234 280 129 643 
Summer 2005 2284 175 153 125 98 375 
Summer 2006 2457 377 369 171 102 641 
Summer 2007 2442 338 74 183 107 364 
Summer 2008 1161 549 83 157 142 382 

Fall 2014 2094 1050 806 272 0 1,078 
Fall 2015 3436 835 299 390 22 711 
Fall 2016 2881 1379 185 456 0 641 
Fall 2017 4293 621 108 671 0 779 
Fall 2018 4416 689 181 473 0 654 
Fall 2019 3987 377 195 599 0 794 

Summer 2020 3776 158 232 514 0 746 

 

Table 7-4: Percent cover of waterways for Submerged Aquatic Vegetation (SAV), shadow, water hyacinth, water 
primrose, total Floating Aquatic Vegetation (FAV), within the common area (Central Delta + Liberty Island Cache 
Slough complex). 

 % of waterways for common area among all years 

Year SAV Shadow Water 
hyacinth 

Water 
primrose 

Pennywort Total 
FAV 

Summer 2004 15.7% 1.0% 1.4% 1.7% 0.8% 3.9% 
Summer 2005 14.0% 1.1% 0.9% 0.8% 0.6% 2.3% 
Summer 2006 15.1% 2.3% 2.3% 1.1% 0.6% 3.9% 
Summer 2007 15.0% 2.1% 0.5% 1.1% 0.7% 2.2% 
Summer 2008 7.1% 3.4% 0.5% 1.0% 0.9% 2.3% 

Fall 2014 12.9% 6.4% 4.9% 1.7% 0.0% 6.6% 
Fall 2015 21.1% 5.1% 1.8% 2.4% 0.1% 4.4% 
Fall 2016 17.7% 8.5% 1.1% 2.8% 0.0% 3.9% 
Fall 2017 26.4% 3.8% 0.7% 4.1% 0.0% 4.8% 
Fall 2018 27.1% 4.2% 1.1% 2.9% 0.0% 4.0% 
Fall 2019 24.5% 2.3% 1.2% 3.7% 0.0% 4.9% 

Summer 2020 23.2% 1.0% 1.4% 4.8% 0.0% 6.2% 
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Figure 7-3: SAV as % cover of waterways for all available years (2009-2013 data gap) 

 

 

Figure 7-4: FAV total and by species as % cover of waterways for all available years (2009-2013 data gap) 

The legal Delta imagery was acquired in 2004-2007, 2014, 2015, 2019, and 2020. All other years, the 
area acquired did not cover the entire Delta. Hence, figures 7-5 and 7-6 show the FAV and SAV cover for 
only those years when the entire extent was acquired. 
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Figure 7-5: FAV species cover in hectares for all years that the Legal Delta imagery was captured. 

 

 

Figure 7-6: Total FAV and SAV cover in hectares for all years that the Legal Delta imagery was captured. 

The total area in hectares for the Legal Delta are catalogued in Table 7-5. The maximum area of SAV 
recorded in the Delta is almost 5000 hectares and for FAV is almost 1400 hectares. The hectares 
recorded here do not include the SAV and FAV cover within restoration sites that have become tidally 
active in recent years (post-2014) in order to provide a fair comparison with previous years (2004-2008) 
when these sites were leveed off and not connected to the aquatic Delta. However, we did map the 
restoration sites and have noted that these invasive species have infiltrated many of the sites making it 
difficult to achieve management objectives for those sites. 
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Table 7-5: FAV species and total cover and SAV cover in hectares for all years that the Legal Delta was captured. 

  % of waterways for common area among all years 

Year SAV Shadow 
Water 

hyacinth 
Water 

primrose Pennywort 
Total 

FAV 
Summer 2004 3084.8 194.4 308.9 381.6 169.2 859.6 
Summer 2005 2725.4 232.1 201.1 156.2 116.2 473.6 
Summer 2006 2933.3 470.4 484.7 246.6 122.7 854.1 
Summer 2007 2865.0 498.5 90.9 260.2 116.6 467.7 

Fall 2014 2574.5 1941.7 1094.0 303.6 0.0 1397.6 
Fall 2015 4107.7 951.0 376.8 439.8 30.2 846.7 
Fall 2019 4988.6 485.9 247.5 663.9 0.0 911.4 

Summer 2020 4421.9 182.8 318.7 598.5 0.0 917.2 
 

With this long dataset dating back to 2004, we have observed many changes within the Delta. The total 
extent of invaded waterways has increased from the early period (less than 10% of waterways in 2008) 
to current (31% of waterways in 2017 and 2018). SAV also seems to have increased during the recent 
drought and now occupies ~10% more of waterways than it did in the early period (2004-2008; ~15%). 
This change has come gradually with the invasion of new habitat that used to be SAV-free in early years, 
for example, Liberty Island (see Figure 8-5). 

The floating vegetation community has also changed in significant ways. While water hyacinth cover 
doesn’t show a trend over time, in 2014, it was the highest ever when the Division of Boating and 
Waterways control program for water hyacinth got delayed. 2014, being a peak drought period, 
recorded the highest ever cover of total FAV (1400 hectares), dominated by water hyacinth. In the early 
period, FAV was co-dominated by three genera, the native pennywort, and the invasive water hyacinth 
and water primrose. But in recent years, pennywort has been outcompeted by the invasives (Figures 7-3 
to 7-6) only showing up in spring and disappearing by summer (personal observation). Hence, it has 
been hard to find enough pennywort patches to train the classifier for the summer and fall imagery. 

Water primrose has been the greatest species of concern among floating aquatic invasives due to its 
ability of invading marsh and replacing it (Khanna et al., 2018b). This species has expanded its cover in 
the Delta in the past two decades (Figure 7-4). It has also spread into areas slated for restoration like 
Prospect Island, making it difficult to engineer healthy restored ecosystems. In recent years, we have 
observed an acceleration of the invasion of water primrose into remnant Delta marshes. A study geared 
towards understanding the mechanisms that make this species a great invader and allow it to replace 
marsh has been funded under Prop 1. The same study will also quantify the movement of the invasion 
front of water primrose into vulnerable marshes. 

 



P a g e  | 24 
 

 

Figure 7-7. Submerged aquatic vegetation (SAV), water hyacinth and water primrose classification across the 
Central Delta and Liberty Island in July 2020.  
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8. Key Questions to be Addressed 

8.1  Ideal Window for Image Acquisition 

The IEP Report on monitoring of aquatic species recommended two acquisitions per year, one in spring, 
and one in fall to get a pre-treatment condition estimate and a post-treatment condition estimate of 
invasive species cover (Khanna et al., 2018a). On completing analysis of 2004-2008 and 2020 summer 
imagery, 2014-2019 fall imagery and the 2019 spring imagery, we recommend that the ideal timing for 
collecting imagery with the aim of mapping the maximum extent of invasive species is in August of every 
year. Our reasoning behind this recommendation is described below: 

Without the intervention of a treatment program, the extent of invasive species cover would potentially 
reach its peak in October, right before the vegetation starts to senesce in November. However, DBW 
starts treating SAV and FAV in March and continues until October tapering off in November (DBW, 
2018). Thus, there is new growth due to the summer growing season while there is die-off due to 
treatment. Hence, capturing imagery in October does not necessarily lead to mapping the maximum 
extent of cover. Furthermore, by October, the sun is lower in the sky leading to greater flightline edge 
effects. Higher winds in fall also lead to speckle on the larger open water areas. Both these factors 
increase errors in aquatic vegetation mapping. 

In spring, sun angle is still low leading to higher flightline edge effects. Moreover, the vegetation is just 
beginning to grow hence it is harder to find training and validation data in the field for species of 
interest such as water hyacinth, water primrose, etc. These factors make it difficult to derive a high 
accuracy map of the Delta vegetation. In summer, wind speeds are low, flightline edge effects are low, 
and growth vigor, size of patches, abundance of patches are all high. Hence, the month of August offers 
the best confluence of ideal imaging conditions, phenological state of invasive plants and the impact of 
treatment. 

8.2  Comparing the Monitoring Scenarios 

The Sentinel project has demonstrated that Sentinel imagery can be classified with reasonable accuracy 
into the same classes that the hyperspectral imagery has been targeting. However, that does not mean 
that the Sentinel class maps are comparable to the hyperspectral imagery derived maps. The spatial 
resolution of the two maps is very different with 25 pixels of recent SpecTIR imagery (2x2m) fitting into 
every single Sentinel pixel (10x10m). This means that there are many more mixed pixels in the images 
which can only be assigned to a single class, necessarily introducing error in estimating cover and 
location of invasive species.  

A study to determine the feasibility of mapping the Delta (filling the data gap between 2009 and 2013) 
using fine spatial resolution satellite imagery like WorldView-2, IKONOS, Quickbird, etc. has just been 
funded. This study will help determine if these sensors can offer us the same maps that Sentinel is able 
to produce, but at a resolution that the airborne hyperspectral imagery is able to provide. A previous 
study looking at the impact of oil spills on salt marshes showed that even if these satellite sensors could 
map the region at the same spatial resolution as airborne hyperspectral, the data quality (Signal-to-noise 
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ratio) of the hyperspectral imagery was much better allowed a more accurate determination of oil stress 
(Khanna et al., 2018c). This might also be true of invasive species mapping applications. 

Following the arguments laid out in the previous section (8.2), we do not recommend capturing 
hyperspectral imagery more than once a year. Overall, our recommendation is to use some combination 
of scenario 2 (airborne hyperspectral sensor) and 3 (a global satellite sensor like Sentinel-2) to produce a 
detailed accurate map of aquatic vegetation in the Delta once a year and use the satellite sensor derived 
maps to track changes in phenology and plant health seasonally and annually. 

8.3  Evaluation of Changing DBW Treatment Plans 

We could not conduct this part of the experiment because we were unable to acquire treatment 
location/date data for 2019 and 2020. The 2019 annual treatment plan report published by DBW did not 
include appendices with information on type and amount of herbicide applied on a particular date per 
site in the Delta. The 2020 report has not been published yet. Hence, we could not procure this 
information and could not evaluate how the change in target species and timing of application has 
affected treatment efficacy. 

8.4  Google Earth Engine Applications for Sentinel Project 

The development of Google Earth Engine (GEE) application and scripts will be shared within the Sentinel 
project report since this GEE deliverable is more closely related to that project.  
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9. Site Maps 

This section contains maps of the seven focus areas showing change from 2004 to 2020. For four sites, 
we also show the change in mat density for some years. 

9.1  Sherman Lake 

 

 

Figure 8-1: Class maps of Sherman Lake in western Delta from 2004 to 2020. 

Emergent Water hyacinth Pennywort Water primrose

Water Dry vegetation RiparianShadow Soil - Levee

SAV
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SAV in Sherman Lake has spread and ebbed through the years overall not showing a trend towards 
increase of decrease in cover (Figure 8-1). The scalloped patterns seen most clearly in 2015 on both the 
western and eastern sides of the lake (Figures 8-1 & 8-2) are formed by Stukenia pectinata patches and 
tend to spread out in arched patterns. However, in 2020, we see that the eastern patches are getting 
quite thick and there is a ridge along the middle which probably overlaying a sandbar which shows thick 
growth of SAV (Figure 8-2). In addition to S. pectinata, E. densa, C. demersum, and M. spicatum have 
also been recorded in Sherman Lake in recent years. Moreover, this year during field work, we 
discovered a couple of patches of a new invasive SAV species which was first recorded in 2017 in the 
Delta, Vallisneria australis (ribbon weed). Ribbon weed tends to grow very thickly and concentrically out 
from its starting point making round patches. We found through observations of historical imagery on 
google earth, that one of the largest patches in Sherman Lake positively identified as ribbon weed this 
year, has existed in the same spot since 2014, which might be the original entry point of the species. 

 

Figure 8-2: SAV mat density in September 2015, October 2018, September 2019 and July 2020 in Sherman Lake. 
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9.2  Big Break 

 

 

Figure 8-3: Class maps of Big Break in western Delta from 2004 to 2020. 

Big Break is slightly east of Sherman Lake but still in the western Delta. The SAV community in Big Break 
is more diverse co-dominated by S. pectinata, M. spicatum, P. crispus, C. demersum, and E. densa. Figure 
8-3 shows the change in distribution of SAV and FAV from 2015 to 2020. SAV cover has generally 

Emergent Water hyacinth Pennywort Water primrose

Water Dry vegetation RiparianShadow Soil - Levee

SAV
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increased over the years, and the central portion of the flooded island in the east end has filled in with 
SAV compared to the early years. During the 2015 implementation of the drought barrier, the 
expectation was that Big Break would see a decrease in SAV cover because of increased salinity due to 
the barrier. However, we observed that SAV cover increased and the species composition changed 
towards species more tolerant of higher salinities e.g. S. pectinata (Kimmerer et al., 2019).  

 

Figure 8-4: SAV mat density from 2015 to 2020 in Big Break. 

9.3  Liberty Island 

Liberty Island flooded in 1998 due to a levee breach and since then has been a natural experiment in 
wetland expansion. In the early period (2004-2008), emergent wetland area increased in cover each 
year.  In those years, coarse substrate underlying this large shallow island and wind generated wave 
action prevented the establishment of SAV in Liberty Island. But, in recent years, two major changes 
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have happened in this region. Water primrose has increased in cover filling up the narrow regions 
between marsh patches and then infiltrating into the marsh (Khanna et al., 2018b).  

 

 

Figure 8-5: Class maps of the northwestern end of Liberty Island from 2004-2020. Note the encroachment of water 
primrose into emergent marshes. The marsh dryness varies across years (note variable NPV cover across years). 
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During the recent drought, SAV has also increased in the northern region of the island likely dampening 
wind-driven wave action and causing fine sediment to deposit in the region. All of these changes are 
likely fueling a positive feedback for SAV establishment leading to further expansion of SAV (Figure 8-5). 

9.4  Frank’s Tract 

 

Figure 8-6: Class maps of Frank’s Tract from 2004-2020. 

In Franks Tract, the SAV community has changed from an E. densa dominated community to a more 
mixed native species dominated community (Caudill et al., 2019). Native SAV canopies are more open 
and less dense than invasive canopies hence harder to map through remote sensing. In Figure 8-6, we 
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see that the SAV extent was the greatest in 2015 to 2017, but has reduced somewhat since then. 
However, Franks Tract is a good example of how tidal stage, rough water surface, and flightline effects 
can affect SAV classification. High tide and turbid waters can cause the SAV signal to be suppressed e.g. 
in 2020. Flightline edge effects show up as abrupt changes in SAV cover at the upper or lower edge of 
the flightline (noticeable in 2019 and 2020).  Under these confounding conditions, density calculations 
are also less reliable hence we don’t show them here. 

9.5  Rhode Island 

 

Figure 8-7: Class maps for Rhode Island from 2004-2020. 
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Rhode Island was flooded in 1938, and between 2004 and 2020, saw a major shift from submerged to a 
floating aquatic community (Figure 8-7). During the early period, the flooded island was dominated by 
SAV cover and there were scattered water hyacinth and pennywort mats at the edges. But in recent 
years, almost the entire island has filled in with water primrose with scattered water hyacinth mats in a 
few places.  This change has stayed pretty consistent since 2017 (Figure 8-7). 

9.6  Venice Cut 

 

 

Figure 8-8 SAV and FAV cover in Venice Cut from 2004 - 2020 
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The main change in Venice Cut has been the increase of both water primrose mats along the inside edge 
of the island and an increase in pure Cabomba caroliniana mats in the southern end of the island. We 
have also observed water primrose infiltration into the emergent marsh patches of this island, especially 
in the northwest edge of the island. 

 

Figure 8-9: SAV mat density in Venice cut from 2015-2020. 

9.7  Ward Cut 

In Ward Cut, the dominant change from early years is a replacement from pennywort and water 
hyacinth mats to water primrose and water hyacinth. SAV has been mostly constant within the flooded 
island pair. 
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Figure 8-10: Class maps of Ward Cut from 2004-2020. 
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11. Appendix A. Classifier inputs and their description 

Acronym Description 

Indices Index inputs 

NDVI Normalized Difference Vegetation Index (Leaf area and pigment indicator) 
gNDVI Green NDVI (Pigment indicator) 
mNDVI Modified (or Red-Edge) NDVI (Leaf area and pigment indicator) 
RG_Ratio Red-Green Ratio (Anthocyanin indicator) 
NDII Normalized Difference Infrared Index (Indicator of canopy water content) 
NDII2 NDII using SWIR band at ~2200 nm (Indicator of canopy water content) 
LPI Leaf Pigment Index (Pigment indicator) 

ANIR Angle at NIR (Tracks changes in plant condition, e.g. the transition between live and 
senescent vegetation) 

ARed Angle at Red (Tracks changes in plant condition) 

ASWIR1 Angle at SWIR1 (or ~1600 nm) 
(Indicator  of canopy and soil water content) 

GI Green Index (Phenology indicator) 
PRI Photochemical Reflectance Index (Indicator of photosynthesis) 
CAI Cellulose Absorption Index (Cellulose indicator) 
WADI Water Absorption Difference Index for the 1160 nm absorption feature 

ADW1 Absorption Depth of Water at 990 nm 

ADW2 Absorption Depth of Water at 1170 nm 

SIPI Structure Insensitive Pigment Index (Carotenoid and Chlorophyll A indicator) 
CRI_550 Carotenoid Reflectance Index using 550 nm band (Carotenoid indicator) 
CRI_700 Carotenoid Reflectance Index using 700 nm band (Carotenoid indicator) 
ARI Anthocyanin Reflectance Index (Anthocyanin indicator) 
Blue Reflectance at Blue band 

Green Reflectance at Green band 

Red Reflectance at Red band 

NIR Reflectance at NIR band 

SWIR1 Reflectance at SWIR ~1600 nm band 

SWIR2 Reflectance at SWIR ~2200 nm band 

CRWAT1 Continuum Removal over water absorption at 980 nm (continuum removal explained 
below) 

CRWAT2 Continuum Removal over water absorption at 1160 nm 
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CRCELL Continuum Removal over cellulose absorption 

SAM inputs Spectral Angle Mapper 

SAM_SAV SAM band for Submerged Aquatic Vegetation (SAV) 

SAM_WH SAM band for Water Hyacinth  

SAM_TULE SAM band for Tule  

SAM_PRIM SAM band for Water Primrose  

SAM_PHRAG SAM band for Phragmites  

SAM_PEN SAM band for Pennywort  

SAM_CAT SAM band for Cattails  

SAM_AZLDK SAM band for Azolla and Duckweed  

SAM_ARND SAM band for Arundo  

SAM_MLFL SAM band for Watermilfoil  

SAM_TWAT SAM band for Turbid Water  

SAM_SAGO SAM band for Sago Pondweed  

SAM_ELOD SAM band for Elodea  

SAM_EGER SAM band for Egeria  

SAM_CRLF SAM band for Curlyleaf pondweed  

SAM_COON SAM band for Coontail  

SAM_CWAT SAM band for Clear Water  

SAM_CAB SAM band for Cabomba  

SAM_ALG SAM band for Algae mats  

SMA inputs Spectral Mixture Analysis 
SMA_WAT SMA percent pixel cover of water 

SMA_SOIL SMA percent pixel cover of soil 

SMA_NPV SMA percent pixel cover of non-photosynthetic vegetation (NPV) 

SMA_SAV SMA percent pixel cover of submerged aquatic vegetation 

SMA_FLT SMA percent pixel cover of floating green vegetation 

SMA_EME SMA percent pixel cover of emergent vegetation 

SMA_RMSE SMA root mean square error 

SVIS SAV Vegetation Index using SAV line 

 

 


